quemb.molbe.mbe.BE.optimize¶
- BE.optimize(solver='MP2', method='QN', only_chem=False, use_cumulant=True, conv_tol=1e-06, relax_density=False, J0=None, nproc=1, ompnum=4, max_iter=500, trust_region=False, solver_args=None)¶
BE optimization function
Interfaces BEOPT to perform bootstrap embedding optimization.
- Parameters:
solver (
str
) – High-level solver for the fragment, by default ‘MP2’method (
str
) – Optimization method, by default ‘QN’only_chem (
bool
) – If true, density matching is not performed – only global chemical potential is optimized, by default Falseuse_cumulant (
bool
) – Whether to use the cumulant energy expression, by default True.conv_tol (
float
) – Convergence tolerance, by default 1.e-6relax_density (
bool
) – Whether to use relaxed or unrelaxed densities, by default False This option is for using CCSD as solver. Relaxed density here uses Lambda amplitudes, whereas unrelaxed density only uses T amplitudes. c.f. See http://classic.chem.msu.su/cgi-bin/ceilidh.exe/gran/gamess/forum/?C34df668afbHW-7216-1405+00.htm for the distinction between the twomax_iter (
int
) – Maximum number of optimization steps, by default 500nproc (
int
) – Total number of processors assigned for the optimization. Defaults to 1. When nproc > 1, Python multithreading is invoked.ompnum (
int
) – If nproc > 1, ompnum sets the number of cores for OpenMP parallelization. Defaults to 4J0 (
ndarray
[Tuple
[int
,...
],dtype
[floating
]] |None
) – Initial Jacobian.trust_region (
bool
) – Use trust-region based QN optimization, by default False
- Return type: